High Yield Soybean

Chad Lee, Ph.D. Extension Agronomist University of Kentucky cdlee2@uky.edu http://graincrops.blogspot.com/

Yield Limitations

Management, Genetics, Environment, etc. Interact with Each Other...

Environment

- Rainfall (or Irrigation)
 - Amount
 - Intensity
 - Timing
- Temperatures
 - Day
 - Night
- Sunlight
 - Per Day
 - Per Season

- How was 2009?
- How was 2010?
- How was 2011?
- What will 2012 bring?

High Yield System

uкAg

High yield system

Key components

- Productive soils (deep, proper pH, adequate fertility, no compaction)
- Adequate, timely rainfall (or irrigation)
- Using good genetics
- Rotating crops
- Planting on time (not necessarily early)
- Accurate planting (good placement, proper seeding rates)
- Planting in narrow rows (20 inches or less)
- Capturing nearly 100% sunlight at by about R1
- Getting excellent weed control (no trophy-hunting)
- Scouting for diseases and pests
- Pay attention to the crop, treat it as a primary crop

High Yield System

• When we are doing all the basics, is there some way to get even more yield?

Maximum Soybean Yields (Kitchen Sink)

- Rationale: With high grain prices and a perception of stagnant yields, farmers are attempting to buy their way to greater yields – often with little (or no) scientific basis.
- The Kitchen Sink is an attempt to examine maximum yields through current products and to tease-out the product(s) that provide the greatest chance of increasing yields.

Example from Seth Naeve, 2011

The Kitchen Sink

- Examines multiple inputs
 - By 'drop out'
 - In systems
 - Early-season intensive management
 - Late-season intensive management
- 3 locations per state
- 6 replications

Kitchen Sink Soybeans

- 6 states
 - Michigan State
 - Minnesota
 - Iowa State
 - Kentucky
 - Arkansas
 - Louisiana State
- Part of a larger set of studies

Basic Comparisons

- Narrow rows
 - 15" or 20" (vs. 30")
- High seeding rates
 - 200K (vs. 100K) 2009
 - 240K (vs. 140K) 2010
 - 240K (vs. 140K) 2011

Kitchen Sink Treatment

- Seed treatment:
 - Trilex 6000 (Bayer) 2009
 - Cruiser Maxx (Syngenta)
 2010, 2011
- Inoculant:
 - Vault LV (Becker Underwood)
- Additional soil-applied fertilizer:
 - P₂O₅, K₂O, S, B, Mn, Zn

- Foliar Fertilizer:
 - Task Force 2 (Loveland) applied at RI
- Foliar Fungicide:
 - Headline (BASF) at R3
- Narrow or Wide Rows
- Target Plant Density
 - 100,000 plants/acre

Kitchen Sink Plus

- Kitchen Sink +
 - Additional 100,000
 plants/acre (targeting a total of 200,000
 plants/acre)
 - 15" rows

- Kitchen Sink ++
 - Additional 100,000
 plants/acre (targeting a total of 200,000
 plants/acre)
 - Additional foliar fungicide
 - Headline @ R3
 - Quilt @ R5
 - 15" rows

No.	Treatment	Abbreviation
12	Standard input, I5" rows (control I5")	Control 15"
I	Standard input, 30" rows (control 30")	Control 30"
2	High input, 15" rows (Kitchen Sink 15")	Kitchen Sink 15"
3	High input, 30" rows (Kitchen Sink 30")	Kitchen Sink 30"
5	High input, 15" rows w/o additional soil fertility	KS - Soil Fert.
6	High input, I 5" rows w/o inoculant	KS - Inoc.
8	High input, 15" rows w/o seed treatment	KS - Seed Trt
4	High input, 15" rows w/o foliar fertility	KS - Fol. Fert.
7	High input, 15" rows w/o foliar fungicide	KS - Fol. Fung.
	High input, 30" rows w/o foliar fungicide	KS - Fol. Fung. 30"
9	Late season management, 15" rows	Late
10	Early season management, 15" rows	Early
13	Ultra high input, I 5" rows	Kitchen Sink +
14	Ultra high input, I 5" rows + add'l fungicide	Kitchen Sink ++

Preliminary Results

- These results in the following slides are preliminary.
- Additional analyses are needed.
- Graduate students will be writing theses and publishing data that may be analyzed differently than what is presented here.

Kitchen Sink – Northern summary PRELIMINARY

- Application of a foliar fungicide appeared to provide the largest fraction of yield increases by the "kitchen sink" treatment (for MN, MI and IA)
- One of the largest synergistic effects was through narrow row spacing (for MN, MI and IA).

	2011 Kitchen Sink Soybean	Hopkinsville		New Haven		Lexington	
	PRELIMINARY	36°39'54" N,		37°39'28" N,		37°59'19" N,	
	Treatment	87°26'.	87°26'34" W		5'27" W	84°28'39" W	
		bu/acre		bu/acre		bu/acre	
12	2 Control 15"	39.2	cbcde	77.4	ef	69.4	bcd
- I	Control 30"	40.4	bcde	73.3	f	39.7	f
2	Kitchen Sink 15"	46.9	abcd	82.7	abcdef	61.5	cd
3	Kitchen Sink 30"	34.0	ed	77.7	def	46.3	ef
5	KS - Soil Fert.	53.8	а	83.3	abcdef	68.3	bcd
6	KS - Inoc.	43.7	abcde	89.5	ab	58.0	cde
8	KS - Seed Trt	38. I	cde	79.9	bcdef	68.3	bcd
4	KS - Fol. Fert.	44.9	abcde	89.1	abc	57.7	cde
7	KS - Fol. Fung.	32.3	ed	80.7	bcdef	61.4	cd
	KS - Fol. Fung. 30"	48.5	abc	77.8	def	36.4	f
9	Late	40. I	bcde	87.6	abcd	71.7	abc
IC) Early	52.0	ab	87.8	abcd	56.7	ed
13	3 KS + 100K	46.8	abcd	92.7	a	84.9	a
4	4 KS++	42.4	abcde	87.3	abcde	81.0	ab
	LSD (0.10)	13.1		10.1		4.	
	MEAN	43.3		83.2		61.3	
	ANOVA Treatment p value	0.081		<.0001		<.0001	

Kitchen Sink Soybean PRELIMINARY

- In Kentucky, 8 site-years
 - 2009, 2010, 2011
 - 3 locations each year
 - I site in 2010 "lost" to dry weather
- Significant differences in 6 out of 8 site-years
- In those 8 site-years:
 - KS + was among the highest yields
 - Implies that (in Kentucky) higher seeding rate may be needed with higher inputs to get more yield
 - KY was only no-till sites. Perhaps no-till is influencing population response to inputs.

Partial Expenses per Acre†	Kitchen Sink +	Kitchen Sink
Trilex 6000 (or Cruiser Maxx)	\$15.00	\$7.50
Vault LV	\$5.85	\$3.40
Task Force 2, 2 qt/A	\$4.63	\$4.63
Headline, 6 oz/A	\$14.53	\$14.53
84 lbs P ₂ O ₅ (DAP)	\$79.06	\$79.06
56 lbs K ₂ O (KCl)	\$25.43	\$25.43
0.5 lb B (Borax, I I%B)	\$1.82	\$1.82
2 lb Mn (MnSO ₄)	\$5.31	\$5.31
0.5 lb Zn (ZnSO ₄)	\$1.70	\$1.70
Fol. Fert. Application	\$7.00	\$7.00
Fol. Fung. Application	\$7.00	\$7.00
Additional 100K Seed (\$60/bag)	\$37.50	-
Total Extra Costs, \$/acre	\$204.83	\$157.38

† Most costs were estimated in January 2011, by averaging values from some several interviews with retail outlets. The seed treatment price was adjusted December 2011.

Preliminary Results

- These results are preliminary.
- Additional analyses are needed.
- Graduate students will be writing theses and publishing data that may be analyzed differently than what is presented here.

Basics must be in place before trying more inputs.

Key components

- Productive soils (deep, proper pH, adequate fertility, no compaction)
- Adequate, timely rainfall (or irrigation)
- Using good genetics
- Rotating crops
- Planting on time (not necessarily early)
- Accurate planting (good placement, proper seeding rates)
- Planting in narrow rows (20 inches or less)
- Capturing nearly 100% sunlight at by about R1
- Getting excellent weed control (no trophy-hunting)
- Scouting for diseases and pests
- Pay attention to the crop, treat it as a primary crop

Soy MVP

- Soybean Management Verification Program
- Compares University of Kentucky guidelines to producer practices.
- 2009 and 2010: an economic advantage to U.K.

University Guidelines

Producer Practice

June 24, 2010 – V13, R2

June 24, 2010 – VI3, R2

Soy MVP, 2009

Location	University Guidelines	Producer Practice	University Guidelines	Producer Practice	
	Yield, bu/acre		Partial Net Return, \$/acre		
Graves County A	72.1	76.6	641.11	660.42	
Graves County B	59.2	50. I	511.55	418.49	
Hickman County A	51.0	50.8	427.17	425.25	
Hickman County B	50.6	50.8	423.33	425.25	
Lyon County	42.8	42.5	339.78	333.64	
Muhlenberg County A	47.0	45.I	389.46	360.42	
Muhlenberg County B	38.9	39.3	311.70	304.74	
Trigg County	54.8	57.1	438.34	454.35	
Average	52.1	51.6	435.31	422.82	
Average Difference	+0.5 b	u/acre	+ \$12.49/acre		

Soy MVP, 2010

	University	Producer	University		
Location	Guidelines	Practice	Guidelines	Producer Practice	
	Yield, bu/acre		Partial Net F	Return, \$/acre	
Muhlenberg ¹	48.1	49.8	404.69	414.97	
Trigg ²	23.9	28.0	169.24	177.58	
Marshall ³	19.7	19.0	133.86	97.44	
Calloway ⁴	26.7	24.3	203.86	150.44	
Butler⁵	44.7	46.6	365.33	371.73	
Henderson 1 ⁶	71.5	70.9	629.72	593.15	
Henderson 2 ⁷	75.2	80.4	681.72	688.15	
Average	44.3	45.6	369.77	356.21	
Average Difference	erage Difference -1.3 bu/acre		+ \$13.	56/acre	

¹Seeding rate 135K (FP) vs. 120K (UK)

²Seeding rate 150K (FP) vs. 120K (UK), fungicide, insecticide on FP

³Fungicide seed treatment for FP, 160K (FP) vs. 120K (UK)

⁴Fungicide seed treatment for FP, 160K (FP) vs. 120K (UK)

⁵Seeding rate 150K (FP) vs. 120K (UK), fungicide used on both sides

⁶Insecticide used for FP, 165K (FP) vs. 120K (UK), fungicide and foliar P, K on both sides

⁷FP used fungicide, insecticide, foliar fertilizer, 165K (FP) vs. 120K (UK)

Basics must be in place before trying more inputs.

Key components

- Productive soils (deep, proper pH, adequate fertility, no compaction)
- Adequate, timely rainfall (or irrigation)
- Using good genetics
- Rotating crops
- Planting on time (not necessarily early)
- Accurate planting (good placement, proper seeding rates)
- Planting in narrow rows (20 inches or less)
- Capturing nearly 100% sunlight at by about R1
- Getting excellent weed control (no trophy-hunting)
- Scouting for diseases and pests
- Pay attention to the crop, treat it as a primary crop

Thank You

