Corn Problems in 2011

Chad Lee Grain Crops Extension University of Kentucky cdlee2@uky.edu www.uky.edu/Ag/GrainCrops

12/1/201

General Guidelines for Corn

- Planting Date:
 - April: western KY
 - Mid-April to Mid-May (central and eastern KY)
- Plant Population: 24,000 to 30,000 plants/A
- Row Width: 30-inch rows
- Nutrients: Follow AGR-1
 - If pH is low, Lime in the fall
 - If P_2O_5 or K_2O is low, apply in fall or spring
 - N must be applied in spring
 - Account for manure
- Control pests before they become a problem

Owensboro, Kentucky, May 10, 2011

© 2011, Chad Lee, Univ. of Kentucky

Water Damage

|2/|/20||

Owensboro, Kentucky, May 10, 2011

© 2011, Chad Lee, Univ. of Kentucky

12/1/2011

IK

EXTENSION

Owensboro, Kentucky, May 10, 2011

© 2011, Chad Lee, Univ. of Kentucky

Flooded Corn

Christian County, May 20, 2011, Flooded areas are common this spring. Some spots have since been replanted.

© 2011, Chad Lee, Univ. of Kentucky

Flooded Areas

12/1/2011

Christian County, May 20, 2011 Sidedress N goes up to the wet spot.

© 2011, Chad Lee, Univ. of Kentucky

Christian County, May 20, 2011 Flooded-out corn near the foreground in this image.

© 2011, Chad Lee, Univ. of Kentucky

Ammonia Burn

12/1/2011

Christian County, May 20, 2011 Ammonia burn on the leaves near the end of the field where the machine makes turns and raises out of the ground.

© 2011, Chad Lee, Univ. of Kentucky

Breckinridge County, June 16, 2011; 90 lbs of K_2O / acre applied earlier in the spring

|2/|/20||

12/1/2011

© 2011, Chad Lee, Univ. of Kentucky

12/1/2011

© 2011, Chad Lee, Univ. of Kentucky

Breckinridge County, June 16, 2011; 90 lbs of K_2O / acre applied earlier in the spring. Most roots are confined to the sides of the seed furrow, but a few have broken through the bottom of the furrow and one has broken through the sides.

12/1/2011 EXTENSION

UK

© 2011, Chad Lee, Univ. of Kentucky

June 17, 2011

© 2011, Chad Lee, Univ. of Kentucky

Edmonson County

June 17, 2011

© 2011, Chad Lee, Univ. of Kentucky

June 17, 2011

© 2011, Chad Lee, Univ. of Kentucky

Will foliar fertilizer help with sidewall compaction?

Crop		Ν	P_2O_5	K ₂ O		Yield		Ν	P_2O_5	K ₂ O	
		lbs/unit						lbs/acre			
corn grain	bu	0.7	0.4	0.35		100	bu	70	40	35	
						200	bu	140	80	70	
						300	bu	210	120	105	
corn stalks	ton	14	7	29		2.8	ton	39	20	81	
						5.6	ton	78	39	162	
						8.4	ton	118	59	244	

Foliar Product	Rate	Unit	Ν	P ₂ O ₅	K ₂ O	S	Organic Carbon	Humic Acids	
			lb/acre	lb/acre	lb/acre	lb/acre	lb/acre	lb/acre	
Monty's 4-15-12	32	ΟZ	0.114	0.4275	0.342	0			
Monty's 8-16-8	32	ΟZ	0.224	0.448	0.224	0			
Monty's 2-15-15	32	ΟZ	0.058	0.435	0.435	0			
Monty's Liquid Carbon	32	oz	0	0	0	0	0.02125	0.0425	
Agro-Culture Liquid High NRG-N	32	oz	0.54	0	0	0.02			
Agro-Culture Liquid accesS	4	gal	0	0	0	6.8			

[†] Mention of a trade name is not an endorsement by the University of Kentucky Cooperative Extension Service.

June 10, 2011, Lexington, KY

© 2011, Chad Lee, Univ. of Kentucky

June 10, 2011, Lexington, KY

© 2011, Chad Lee, Univ. of Kentucky

S Deficiency?

© 2011, Chad Lee, Univ. of Kentucky

Table I. Sulfur (ammonium sulfate) effect on test weight, moisture and yield of corn at Spindletop Farm, Lexington, KY, 2011.

Sulfur Treatment	Test Weight	Moisture	Yield	
	lbs/bu	%	bu/acre	
1.5 lb S/A	57.6	23.0	221.5	
3.0 lb S/A	57.7	22.6	223.7	
6.0 lb S/A	57.8	22.7	216.6	
UTC	57.6	23.1	217.9	
LSD (0.10)	ns	ns	ns	
ANOVA	P value	P value	P value	
trt	0.9331	0.9339	0.1395	
rep	0.7971	0.8721	0.0341	

Table 2. Leaf nutrient analysis from V6 corn harvested on June 14, 2011 (7 days after sulfur treatment)[†]

Sulfur Treatment	Ν	Р	K	Mg	Ca	S	Na	Fe	Mn	В	Cu	Zn		
		%							ppm					
1.5 lb S/A	3.02	0.45	2.77	0.27	0.42	0.13	0.001	95	33	6	7	31		
3.0 lb S/A	3.13	0.48	2.96	0.27	0.40	0.12	0.001	94	43	6	8	34		
6.0 lb S/A	2.79	0.42	2.67	0.29	0.38	0.11	0.001	131	36	4	8	37		
UTC	3.37	0.42	3.12	0.18	0.34	0.13	0.002	105	43	7	12	33		
Sufficient Level	4.25	0.42	3.20	0.30	0.60	0.29	0.008	175	95	12	П	33		
	D	S	S	S-L	L	D	S	D	D	D	L	S		
† Leaf samples analyzed by Midwest Laboratories, Omaha, NE.														

N Deficiency?

12/1/2011

© 2011, Chad L

Larue County, June 16, 2011 Yellow corn appears to line up with the width of N application equipment, not with planter passes.

© 2011, Chad Lee, Univ. of Kentucky

N Deficiency?

|2/|/20||

Larue County, June 16, 2011 Some yellow streaks were not consistent with low areas of the field.

© 2011, Chad Lee, Univ. of Kentucky

Hail Damage

Wayne County, June 3, 2011 Corn received hail about 5 days before these images were taken.

© 2011, Chad Lee, Univ. of Kentucky

Hail Damage

Wayne County, June 3, 2011 Hail ripped leaves and but killed very few plants. Yield loss will be zero or very minimal.

© 2011, Chad Lee, Univ. of Kentucky

Hail Damage

Pollination

August 18, 2011

12/1/2011

Downed Corn UKAG EXTENSION 12/1/2011 August 16, 2011 Shelby County, Kentucky

© 2011, Chad Lee, Univ. of Kentucky

EXTENSION

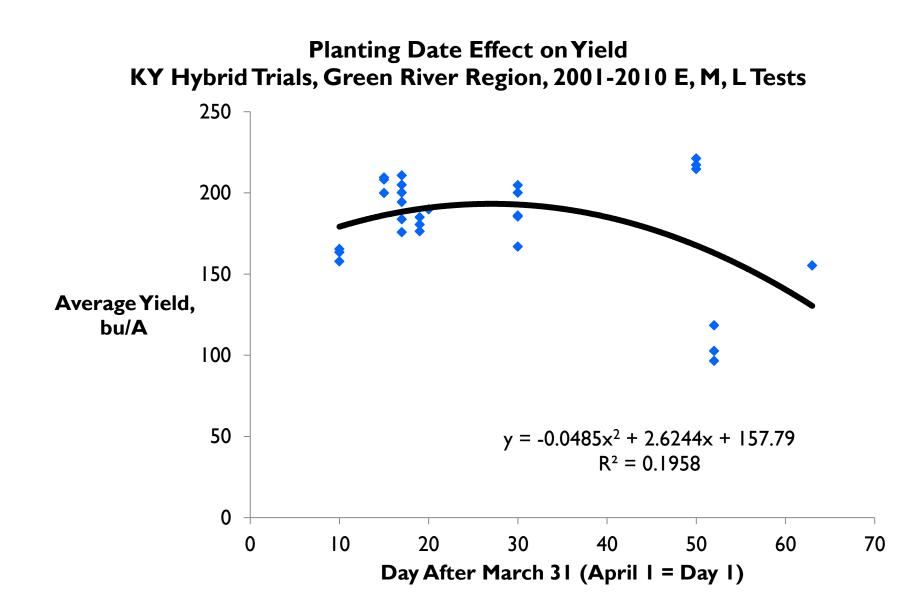
August 18, 2011, about 80 bu/acre yields Shelby County, KY

© 2011, Chad Lee, Univ. of Kentucky

Downed Corn

12/1/2011

August 25, 2011, 190 bu/acre yields Bourbon & Scott Counties, Kentucky


© 2011, Chad Lee, Univ. of Kentucky

Light Interception in Corn

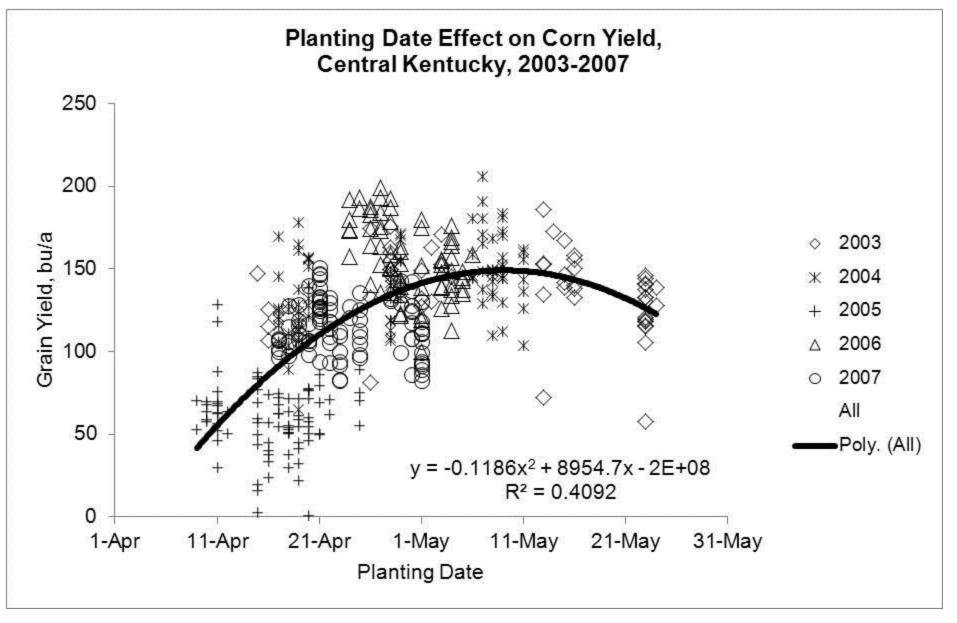
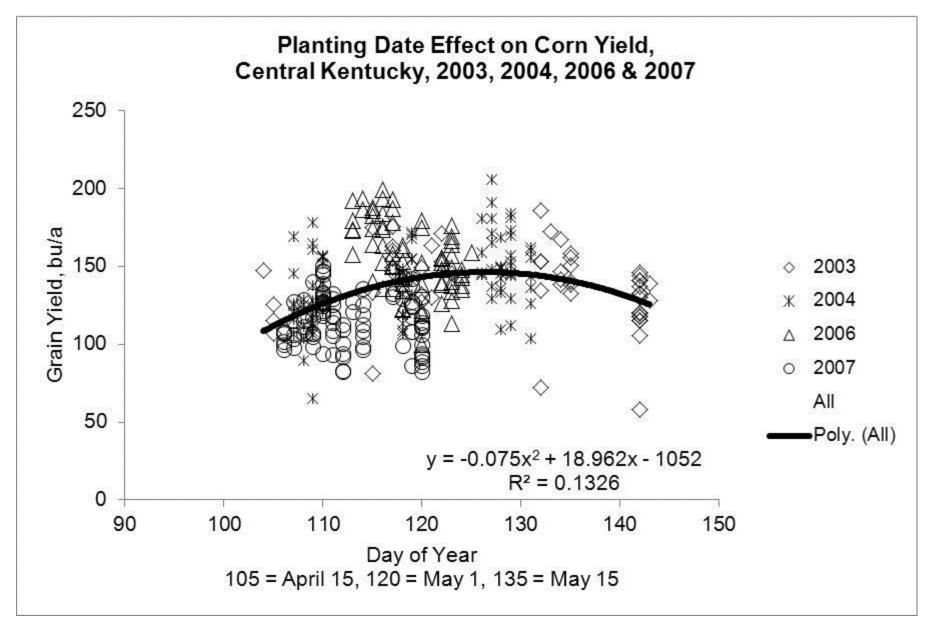



Figure I. Corn yield versus planting date for 2003 through 2007 from central Kentucky production farms. Equations are based on day of year, where April 15 = 105 and May 15 = 135.

UKAg

Figure 2. Corn yield versus planting date for 2003, 2004, 2006 and 2007 from central Kentucky production farms. Equations are based on day of year, where April 15 = 105 and May 15E=cd-35oybean_2011v11142011

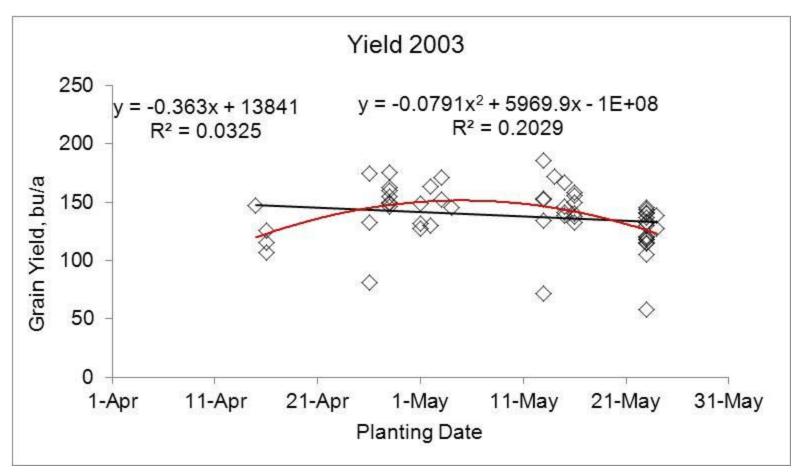


Figure 3. Corn versus planting date for individual years from central Kentucky production farms.

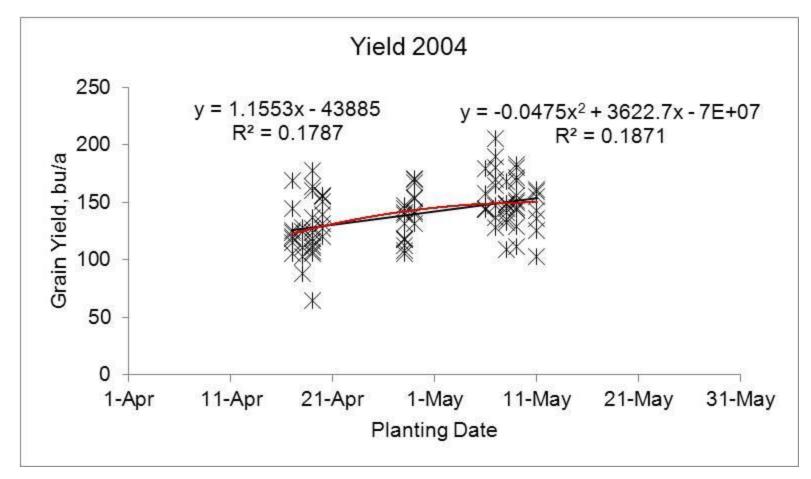


Figure 3. Corn versus planting date for individual years from central Kentucky production farms.

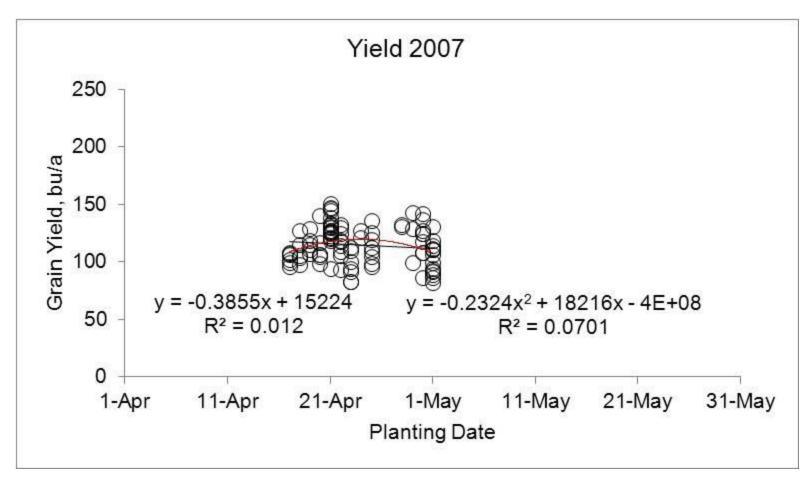


Figure 3. Corn versus planting date for individual years from central Kentucky production farms.

Corn Harvest

