Corn & Soybeans

Chad Lee Grain Crops Extension University of Kentucky cdlee2@uky.edu www.uky.edu/Ag/GrainCrops

12/14/201

General Guidelines for Corn

- Select good genetics
- Planting Date:
 - April: western KY
 - Mid-April to Mid-May (central and eastern KY)
- Plant Population: 24,000 to 30,000 plants/A
- Row Width: 30-inch rows
- Avoid compaction or correct for it
- Nutrients: Follow AGR-I
 - If pH is low, Lime in the fall
 - If P_2O_5 or K_2O is low, apply in fall or spring
 - N must be applied in spring
 - Account for manure
- Control pests before they become a problem

General Guidelines for Soybean

- Select good genetics
- Full season
 - May I to June I

- 100,000 plants/acre, final stand, 15 inch rows
- Double crop
 - As soon as wheat is harvested
 - 140,000 plants/acre, 15 inch rows or less
- Avoid compaction or correct for it
- Nutrients, Follow AGR-I
- Control pests before they become a problem

Topics

- Do Past Results Equal Future Performance?
- <u>Corn Nutrient Requirements</u>
- Basic Math
- Corn Row Widths, Populations, Etc.
- <u>Corn Fungicides and Sulfur</u>
- <u>Corn Hybrid Trials</u>
- Soybean Row Width Studies
- Soybean High Yields
- Soybean Planting Date
- Problems in the Field from 2011
- <u>Home</u>

- UK got to the final four last year.
- Does that mean they will get their this year?

- You washed the dishes for your wife yesterday.
- Does that mean you will do it tomorrow?

- Your corn was planted late this year because of the spring rains.
- Does that mean you will plant late next year?

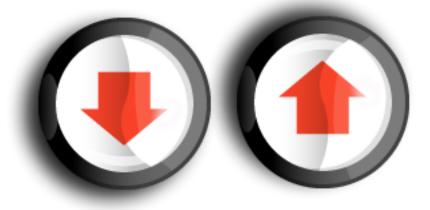
- Someone used a product and got 5 bu/A.
- Does that mean you will get 5 bu/A?

Past Results and Future Performance

- We try to answer this question
- Statistics help us answer it
- **Past Results:** 5 bu/A difference

Stats say: 10 bu/A difference needed to predict future performance

We say: "5 bu/A difference is 'not significant' or that there is no difference"


You say: "What are you saying?!"

LEE_Corn_Soybean 2011v1114201

Field Research

- You want simple answers.
- Field research rarely provides simple answers.

Topics

- Do Past Results Equal Future Performance?
- <u>Corn Nutrient Requirements</u>
- Basic Math
- Corn Row Widths, Populations, Etc.
- <u>Corn Fungicides and Sulfur</u>
- <u>Corn Hybrid Trials</u>
- Soybean Row Width Studies
- Soybean High Yields
- Soybean Planting Date
- Problems in the Field from 2011
- <u>Home</u>

Growing Corn: Topics

- Nutrient Requirements
- Row Widths
- Populations
- Hybrids
- Problems from 2011

Nutrient Requirements

Corn Removal Rates

Crop		Ν	P_2O_5	K ₂ O		Yield		Ν	P_2O_5	K ₂ O
			lbs/unit					I	•	
						100	bu	70	40	35
corn grain	bu	0.7	0.4	0.35		200	bu	140	80	70
						300	bu	210	120	105
						2.8	ton	39	20	81
corn stalks	ton	14	7	29		5.6	ton	78	39	162
						8.4	ton	118	59	244

AGR-I: Lime and Fertilizer Recommendations

Corn Silage Removal Rates

Crop	N	P ₂ O ₅	K ₂ O	Yield		Ν	P ₂ O ₅	K ₂ O	
		lbs/ton				I	bs/acr	е	
corn silage 7.5 3.5	8	15	ton	113	53	120			
		20	ton	150	70	160			
		8	8	8	25	ton	188	88	200
		30	ton	225	105	240			

AGR-I: Lime and Fertilizer Recommendations

		Water	Ν	P_2O_5	K ₂ O
Source	unit	%	lbs/unit	lbs/unit	lbs/unit
Dairy Cattle	ton	80%	11	9	12
Beef	ton	80%	11	7	10

Assume 95% organic material in dry matter 40 to 45% carbon by weight in dry matter

			Ν	P ₂ O ₅	K ₂ O	S	Organic Carbon
Source	Rate	unit			lbs/acı	re	
Dairy Cattle	2	ton	22	18	24		320
Dairy Cattle	4	ton	44	36	48		640
Beef	2	ton	22	14	20		320
Beef	4	ton	44	28	40		640

AGR-1: Lime and Fertilizer Recommendations

12/14/2011

		Water	Ν	P ₂ O ₅	K ₂ O	S	С
Source	unit	%			lbs/ uni	it	
Broiler litter	ton	20%	55	55	45	0.6	640

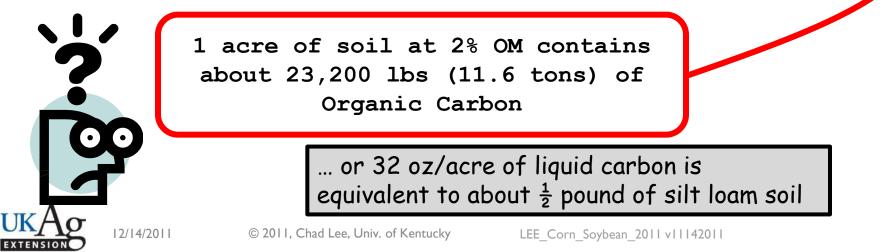
Assume 95% organic material in dry matter 40 to 45% carbon by weight in dry matter

			Ν	P ₂ O ₅	K ₂ O	S	Organic Carbon
Source	Rate	unit			lbs/acre		
Broiler litter	2	ton	110	110	90	1.2	1280
Broiler litter	4	ton	220	220	180	2.4	2560
Broiler litter	10	ton	550	550	450	6.0	6400

How much N (or P or K or C) is coming from foliar fertilizers?

Foliar Product†	Ν	P ₂ O ₅	K ₂ O	S	Fe	Zn	Organic Carbon	Humic Acids
				реі	rcent	(%)		
Monty's 4-15-12	4	15	12	0	0.30	0.05		
Monty's 8-16-8	8	16	8	0	0.30	0.05		
Monty's 2-15-15	2	15	15	0	0.30	0.05		
Monty's Liquid Carbon	0	0	0	0	0.00	0.00	1.00	2.00
Agro-Culture Liquid High NRG-N	27	0	0	I	0	0		
Agro-Culture Liquid	0	0	0	17	0	0		
accesS	0	0	0	17	U	0		

[†] Mention of a trade name is not an endorsement by the University of Kentucky Cooperative Extension Service.


Foliar Product	Rate	Unit	Ν	P ₂ O ₅	K ₂ O	S	Organic Carbon	Humic Acids
			lb/acre	lb/acre	lb/acre	lb/acre	lb/acre	lb/acre
Monty's 4-15-12	32	οz	0.114	0.4275	0.342	0		
Monty's 8-16-8	32	ΟZ	0.224	0.448	0.224	0		
Monty's 2-15-15	32	OZ	0.058	0.435	0.435	0		
Monty's Liquid Carbon	32	oz	0	0	0	0	0.02125	0.0425
Agro-Culture Liquid High NRG-N	32	oz	0.54	0	0	0.02		
Agro-Culture Liquid accesS	4	gal	0	0	0	6.8		

[†] Mention of a trade name is not an endorsement by the University of Kentucky Cooperative Extension Service.

Foliar Product	Rate	Unit	Ν	P ₂ O ₅	K ₂ O	S	Organic Carbon	Humic Acids
			lb/acre	lb/acre	lb/acre	lb/acre	lb/acre	lb/acre
Monty's 4-15-12	32	oz	0.114	0.4275	0.342	0		
Monty's 8-16-8	32	ΟZ	0.224	0.448	0.224	0		
Monty's 2-15-15	32	ΟZ	0.058	0.435	0.435	0		
Monty's Liquid Carbon	32	oz	0	0	0	Ć	0.02125	0.0425
Agro-Culture Liquid High NRG-N	32	oz	0.54	0	0	0.02		
Agro-Culture Liquid accesS	4	gal	0	0	0	6.8		

[†] Mention of a trade name is not an endorsement by the University of Kentucky Cooperative Extension Service.

Definitions

- Organic Carbon:
 - refers to the carbon in organic matter.
 - Organic matter = 1.724 × Organic Carbon.
 - Or OC = OM \times 58%
- Humic acids:
 - Dark-colored amorphous materials that can be extracted from the soil by a variety of reagents. Humic acids are implied to have phenolic or carboxylic groups and molecules have molecular weights of 20,000 to 1,360,000.

http://www.soils.wisc.edu/courses/SS325/organic.htm

http://www.eoearth.org/article/Soil_organic_carbon

Acre Math: Soil with 2% SOM

- One acre furrow slice (43,560 ft² x 6.7 inches deep) of silt loam soil weighs about 2 million pounds.
- If the soil contains 2% soil organic matter (SOM), then that is 40,000 pounds of organic matter.
- Soil organic matter generally contains about 58% organic carbon
- OC = 40,000×58% = 23,200 lbs of organic carbon

http://cropsoil.psu.edu/turf/extension/factsheets/acre-furrow-slice

ttp://www.eoearth.org/article/Soil_organic_carbon

12/14/2011

		Water	Ν	P_2O_5	K ₂ O
Source	unit	%	lbs/unit	lbs/unit	lbs/unit
Dairy Cattle	ton	80%	11	9	12
Beef	ton	80%	11	7	10

Assume 95% organic material in dry matter 40 to 45% carbon by weight in dry matter

			Ν	P ₂ O ₅	K ₂ O	S	Organic Carbon
Source	Rate	unit			lbs/acı	re	
Dairy Cattle	2	ton	22	18	24		320
Dairy Cattle	4	ton	44	36	48		640
Beef	2	ton	22	14	20		320
Beef	4	ton	44	28	40		640

AGR-1: Lime and Fertilizer Recommendations

12/14/2011

		Water	Ν	P ₂ O ₅	K ₂ O	S	С
Source	unit	%			lbs/ uni	it	
Broiler litter	ton	20%	55	55	45	0.6	640

Assume 95% organic material in dry matter 40 to 45% carbon by weight in dry matter

			Ν	P ₂ O ₅	K ₂ O	S	Organic Carbon
Source	Rate	unit			lbs/acre		
Broiler litter	2	ton	110	110	90	1.2	1280
Broiler litter	4	ton	220	220	180	2.4	2560
Broiler litter	10	ton	550	550	450	6.0	6400

Nutrients for Corn

- Follow AGR-1, soil test now to know what your crop needs.
- Avoid 19-19-19
- Avoid foliar fertilizers


Topics

- Do Past Results Equal Future Performance?
- <u>Corn Nutrient Requirements</u>
- Basic Math
- Corn Row Widths, Populations, Etc.
- <u>Corn Fungicides and Sulfur</u>
- <u>Corn Hybrid Trials</u>
- Soybean Row Width Studies
- Soybean High Yields
- Soybean Planting Date
- Problems in the Field from 2011
- <u>Home</u>

Corn Research, Sponsored by the Kentucky Corn Growers Association

ALL I

Graduate Students, Corn Row Widths, 2011

12/14/2011

© 2011, Chad Lee, Univ. of Kentucky

LEE_Corn_Soybean_2011v11142011

Row Widths, Populations, Hybrids

I. Hybrids

- I. DeKalb DKC 66-96
- 2. DeKalb DKC 62-96
- 3. Pioneer 33D49
- 4. Pioneer 1480
- 5. AgriGold 6533
- 6. AgriGold 6632

2. Row Widths

- I. 30 inch rows
- Twin (8-inch twins on 30-inch centers)

3. Plant Density

- I. 30,000 plants/acre
- 2. 45,000 plants/acre

Table 1. ANOVA for p values.

Significance of ANOVA

Plant-to- plant spacing	GDD _{Silk}	Plants ha ⁻¹	Ears ha ⁻¹	Ears per plant	Ear mass	Ear mass ha ⁻¹	Ear moisture
		p value *					
0.2599	0.3617	0.3893	0.5738	0.8904	0.5715	0.2449	0.021
0.5978	<.0001	0.2532	0.4325	0.0147	0.5427	0.6711	0.0221
0.2284	0.0292	0.0341	0.1269	0.8321	0.3024	0.8426	0.3539
0.0005	0.0045	<.0001	0.0001	0.7019	0.0666	<.0001	0.044
0.2686	0.7319	0.0677	0.1501	0.1432	0.2244	0.548	0.3719
0.0012	<.0001	<.0001	<.0001	<.0001	<.0001	0.0363	0.2657
0.5359	0.914	0.1723	0.0065	0.0052	0.875	0.2824	0.0997
0.029	0.0855	0.0137	0.0605	0.2567	0.2124	0.9551	0.1785
0.2407	0.9455	0.0096	0.0326	0.4015	0.2946	0.6507	0.7099
	0.2407	0.2407 0.9455	0.2407 0.9455 0.0096	0.2407 0.9455 0.0096 0.0326	0.2407 0.9455 0.0096 0.0326 0.4015	0.2407 0.9455 0.0096 0.0326 0.4015 0.2946	0.2407 0.9455 0.0096 0.0326 0.4015 0.2946 0.6507

and two row widths.			hybrids and two plant densities.				
Row Width*			Density, 1000 plants/acr				
Hybrid	30 in	Twin	Hybrid	30	45		
GDD _{silk} **				GDD _{silk} **			
DKC66-96	1413	1404	DKC66-96	1395	1422		
DKC62-96	1366	1356	DKC62-96	1352	1371		
33D94	1434	1426	33D94	1422	1438		
1480HR	1451	1438	1480HR	1434	1455		
A6533	1413	1418	A6533	1409	1422		
A6632	1421	1390	A6632	1394	1417		
LSD (0.10)	17	22	LSD (0.10)	21	16		

Table 2. GDD's to silk among six hybridsand two row widths.

Table 3. GDD's to silk among sixhybrids and two plant densities.

*Twin rows are 8 inches apart and the twins are on 30-inch centers.

**Silking determined for an average of 20 plants per plot.

*Target density.

**Silking determined for an average of 20 plants per plot.

PRELIMINARY . PRELIMINARY . PRELIMINARY . PRELIMINARY . PRELIMINARY

Table 4. Ear dry weight and ear yield among two row widths, 2011.						
Ear mass Ear yield*						
Row width lb/ear Mg ha-I						
30 inches	0.4	17.2				
Twin (22 and 8 inches)	0.4	19.9				
LSD (0.10)	ns	1.0				
*Dry Weight basis						

 Table 5. Ear dry weight and ear yield among two plant densities, 2011.

Target density	Ear mass	Ear yield*
Plants/acre	lb/ear	Mg ha ⁻¹
30,000	0.47	17.9
45,000	0.34	19.2
LSD (0.10)	ns	1.0
*Dry Weight basis		

Good rainfall & irrigated Yields averaged over 6 hybrids

Corn Research, Sponsored by the Kentucky Corn Growers Association

Corn Germination

12/14/2011

© 2011, Chad Lee, Univ. of Kentucky

Row Width, Hybrid & Population

• Hybrids

- DeKalb DKC 62-97
- Pioneer PI480HR
- AgriGold A6533VT3
- Row Widths
 - 30 inches
 - 15 inches
 - Twin (8-inch twins on 30-inch centers)

- **Plant Density** (seeds/acre)
 - 30,000
 - 35,000
 - 40,000
 - 45,000
- Locations
 - Lexington
 - Larue County
 - Princeton

June 16, 2011, Larue County, KY Same study at Lexington and Princeton

|2/|4/20||

ANOVA (Abbreviated) for corn yield from different hybrids, row widths and plant densities at three locations, 2011.

	Larue	Larue	Larue	Lexington	Lexington
	DKC62-97	A6533	P1480HR	DKC62-97	A6533
	p value†	p value	p value	p value	p value
Model	0.5868	0.0229	0.2615	0.0292	0.006
	p value	p value	p value	p value	p value
Rep	0.1683	<.0001	0.1798	0.0005	<.0001
Row	0.6269	0.0504	0.433	0.4406	0.0212
Rep*Row	0.5274	0.7841	0.5985	0.2587	0.0021
Рор	0.7677	0.459	0.0758	0.5905	0.0084
Row*Pop	0.5226	0.1468	0.1455	0.0916	0.2607
Rep*Pop	0.5354	0.8004	0.7291	0.143	0.1243

PRELIMINARY . PRELIMINARY . PRELIMINARY . PRELIMINARY . PRELIMINARY

 $+ p \le 0.10$ is considered significant.

PRELIMINARY . PRELIMINARY . PRELIMINARY . PRELIMINARY . PRELIMINARY

Row Width and Population Effect on Yield, Larue County and Lexington, KY, 2011

	Larue	Larue	Larue	Lexington	Lexington
	DKC62-97	A6533	PI480HR	DKC62-97	A6533
Row Width	Bu/A	Bu/A	Bu/A	Bu/A	Bu/A
30	226.5	221.7	181.8	263.2	264.8
15	236.0	239.2	188.2	264.8	280.7
Twin	236.0	239.2	194.6	256.8	269.5
LSD (0.10)	36.7	9.6	9.	14.4	31.9
	p value†	p value	p value	p value	p value
Row	0.6269	0.0504	0.433	0.4406	0.0212

p value ≤ 0.10 is considered significant

PRELIMINARY . PRELIMINARY . PRELIMINARY . PRELIMINARY . PRELIMINARY

Row Width and Population Effect on Yield, Larue County and Lexington, KY, 2011

	Larue	Larue	Larue	Lexington	Lexington
	DKC62-97	A6533	PI480HR	DKC62-97	A6533
Plants/Acre	Bu/A	Bu/A	Bu/A	Bu/A	Bu/A
30,000	227.7	235.3	197.8	260.0	263.2
35,000	254.8	240.7	203.I	260.0	263.2
40,000	221.9	227.5	180.4	260.0	285.5
45,000	229.I	230.2	171.5	267.9	275.9
LSD (0.10)	38.3	28.7	28.7	11.2	11.2
				ns	

Light Interception in Corn

|2/|4/20||

PRELIMINARY . PR

Interception of Photosynthetically Active Radiation (IPAR)

Hybrid		Target Density Plants/Acre										
	30,000		35,000		40,000		45,000					
		IPAR at Ear Height										
DKC 62-97	81%	В	84%	AB	83%	AB	86%	A				
A6533VT3	77%	В	80%	В	89%	А	87%	A				
PI480HR	75%	С	78%	BC	82%	А	81%	AB				

*Means followed by the same letter in the same row are not significantly different ($p \le 0.10$)

Corn Harvest

Topics

- Do Past Results Equal Future Performance?
- <u>Corn Nutrient Requirements</u>
- Basic Math
- <u>Corn Row Widths, Populations, Etc.</u>
- <u>Corn Fungicides and Sulfur</u>
- <u>Corn Hybrid Trials</u>
- Soybean Row Width Studies
- Soybean High Yields
- Soybean Planting Date
- Problems in the Field from 2011
- <u>Home</u>

Corn Fungicides

Table 2. ANOVA of fungicide and replication, 2011

Source	DF	Type III SS	Mean Square	F Value	Pr > F
fungicide	7	1017.1	145.3	1.03	0.4409
rep	3	870.7	290.2	2.05	0.137

Corn Fungicides

Over the past 4 years, no significant differences
 between fungicide and non-treated when disease
 pressure is low.

When to use fungicides

- Odds for disease development are high...
 - No-till corn
 - Weak disease ratings of hybrid
 - Weather favors disease development
 - High yield potential
 - Continuous corn

June 10, 2011, Lexington, KY

© 2011, Chad Lee, Univ. of Kentucky

LEE_Corn_Soybean_2011 v11142011

Table I. Sulfur (ammonium sulfate) effect on test weight, moisture and yield of corn at Spindletop Farm, Lexington, KY, 2011.

	Sulfur Treatment	Test Weight	Moisture	Yield
		lbs/bu	%	bu/acre
	1.5 lb S/A	57.6	23.0	221.5
	3.0 lb S/A	57.7	22.6	223.7
	6.0 lb S/A	57.8	22.7	216.6
-	UTC	57.6	23.1	217.9
	LSD (0.10)	ns	ns	ns
	ANOVA	P value	P value	P value
	trt	0.9331	0.9339	0.1395
	rep	0.7971	0.8721	0.0341

UTC = Untreated Control (no Sulfur added)

Table 2. Leaf nutrient analysis from V6 corn plants sampled on June 14, 2011 (7 days after sulfur treatment)[†]

Sulfur Treatment	Ν	Р	К	Mg	Ca	S	Na	Fe	Mn	В	Cu	Zn
				%						ррт		
1.5 lb S/A	3.02	0.45	2.77	0.27	0.42	0.13	0.001	95	33	6	7	31
3.0 lb S/A	3.13	0.48	2.96	0.27	0.40	0.12	0.001	94	43	6	8	34
6.0 lb S/A	2.79	0.42	2.67	0.29	0.38	0.11	0.001	131	36	4	8	37
UTC	3.37	0.42	3.12	0.18	0.34	0.13	0.002	105	43	7	12	33
Sufficient Level	4.25	0.42	3.20	0.30	0.60	0.29	0.008	175	95	12	П	33
	D	S	S	S-L	L	D	S	D	D	D	L	S
† Leaf sample	s analyz	zed by l	Midwes	t Labo	ratorie	s, Oma	ha, NE.					

Topics

- Do Past Results Equal Future Performance?
- <u>Corn Nutrient Requirements</u>
- Basic Math
- <u>Corn Row Widths, Populations, Etc.</u>
- <u>Corn Fungicides and Sulfur</u>
- <u>Corn Hybrid Trials</u>
- Soybean Row Width Studies
- Soybean High Yields
- Soybean Planting Date
- Problems in the Field from 2011
- <u>Home</u>

Corn Hybrids for Grain

Table 4M-IYR. Summary, 2011, Medium Hybrids (113-117 Days to Maturity), All Locations

	YIELD BU/AC	MOIST %	STAND %	LODG %	TEST WT LBS/BU	
BRAND/HYBRID	2011	2011	2011	2011	2011	
SEED CONSULTANTS SCS 11HR63™	218.2*	19.8	99.8	0.2	54.6	—
STEYER 11406VT3PRO	216.0*	18.1	100.0	0.2	55.5	
STEVVART 8V886VT3PRO	215.4*	18.8	99.7	0. I	55.0	
PIONEER P1404HR HX1,LL,RR2	214.7*	18.6	100.0	0.1	55.3	
PIONEER 1615HR HX1,LL,RR2	214.0*	19.4	100.0	0.2	55.0	
DEKALB DKC63-87 (VT2PRO)	213.4*	17.7	100.0	0.1	55.4	
PIONEER PI319HR HX1,LL,RR2	212.2*	18.4	100.0	0.1	55.4	
CHANNEL BIO 214-14VT3P	211.3*	17.0	100.0	0.1	55.9	
PIONEER 1745HR HX1,LL,RR2	211.1*	19.3	100.0	0.6	54.9	
AGRIGOLD A6573VT3	211.1*	19.4	99.0	0.1	54.8	
PIONEER P1412HR HX1,LL,RR2	210.9*	18.8	100.0	0.0	55.2	
DYNA-GRO D54VP81	210.0*	18.3	99.8	0.3	55.4	
N78S-3111	208.7*	21.3	98.1	0.1	54.1	
BIO GENE BG 850V3	207.9*	17.5	99.4	0.1	55.8	100 hybrids
REV®26HR82™	207.8*	20.3	99.7	0.0	54.5	5 locations
						15 top hybri
MEDIUM AVERAGE	200.5	19	99.6	0.2	55	
LSD (0.10)	10.6	0.7	0.4	1.7	0.3	<u> </u>

LEE_Corn_Soybean_2011 v11142011

2011 Kentucky Corn Hybrid Performance Test

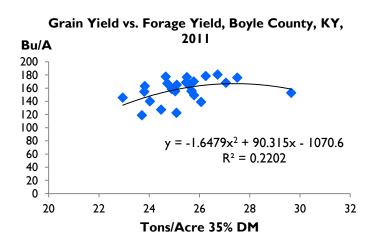
	Early	Medium	Late
	Bu/A	Bu/A	Bu/A
Highest	218.8	218.2	211.4
Lowest	177.8	182.0	188.9
Difference	41.0	36.2	22.5
LSD (0.10)	7.1	10.6	8.7
	3%	5%	4%

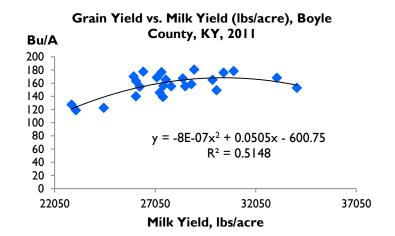
Table 1. Corn Hybrid Performance for Silage, Combined Locations (Boyle & Mason counties), Kentucky, 2011.

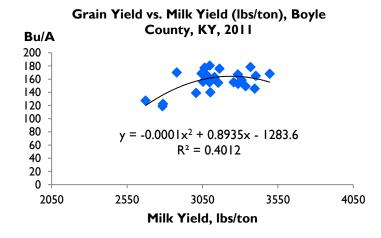
· · · · · · · · · · · · · · · · · · ·	,	Milk	Tons/A	Milk Y	ield ³	NEL ⁴	NEG		Qual	ity, % ⁵	
Brand	Hybrid	Line ^I	35% DM ²	lbs/Ton	lbs/A	Mcal/lb	Mcal/lb	CP	ADF	NDF	Lignin
Asgrow	RX 940 RR2	0.38	24.1	3314	27939	0.77	0.50	7.8	25	42	3.4
Becks	6733 HXR	0.42	23.5	3486	28577	0.79	0.53	8.1	24	40	3.3
Becks	6903 HR	0.42	25.3	3406	30085	0.77	0.50	7.8	24	41	3.3
Cavern. Farms	CF 1026 GT	0.25	21.1	2918	21405	0.66	0.41	6.9	30	50	4.3
Cavern. Farms	CF 907 GTCBLL	0.50	21.9	3135	24004	0.73	0.46	7.7	26	45	3.6
Cavern. Farms	CF 926 GT	0.30	22.0	3315	25606	0.76	0.49	7.6	25	42	3.4
DeKalb	DKC 64-69	0.54	24.1	3176	26735	0.75	0.49	7.5	25	44	3.3
DeKalb	DKC 66-96	0.38	25.4	3544	31421	0.82	0.55	7.5	20	36	2.9
Dyna-Gro	D58VP30	0.33	26.8	3445	32309	0.81	0.54	7.8	22	38	2.9
Dyna-Gro	V5683VT3	0.42	25.5	3245	28907	0.77	0.51	7.7	24	41	3.2
Mycogen	TMF2H918	0.25	25.2	3084	27198	0.70	0.43	8.I	28	46	4.6
Mycogen	TMF2W727	0.25	24.1	3411	28739	0.78	0.51	7.9	25	41	3.6
Northrup King	N73V-3000GT	0.46	23.6	3109	25642	0.71	0.46	7.6	28	47	3.9
Northrup King	N82V-3000GT	0.42	26.1	3390	30842	0.80	0.53	7.5	22	38	3.1
Pioneer	31G67AMI BLEND	0.38	22.1	3263	25142	0.74	0.48	7.8	26	44	3.5
Pioneer	P1615 HR	0.46	24.1	3286	27558	0.76	0.49	7.5	25	42	3.3
Seed Consult.	SCSI I HQ38	0.46	21.5	3316	24894	0.76	0.49	8.0	26	43	4.2
Seed Consult.	SCSI I HR70	0.42	24.7	3290	28320	0.75	0.49	7.3	24	41	3.6
Southern States	SS 818 GENVT3PRO	0.38	23.5	3180	26113	0.74	0.47	7.7	27	44	3.9
Southern States	SS 868 GENVT3PRO	0.42	23.9	3180	26454	0.76	0.49	7.4	24	41	3.3
Wyffels Hybrids	W7213	0.42	25.2	3390	29873	0.80	0.52	8.I	21	37	3.1
Wyffels Hybrids	W8681	0.46	22.0	3469	26729	0.78	0.51	7.8	25	42	3.4
	LSD (0.10)	0.09	3.7								
	CV	24	11.6								
	Grand Mean	0.39	23.9	3288.5	27477	0.8	0.5	7.7	24.8	42.I	3.5

¹ Milk line measures the starch formation on the corn kernel. 0.75 milk line is considered ideal for silage.

² Yields adjusted to 35% dry matter; highest numerical yield is bold with gray box; bold yields are not significantly different from highest yield.


Allk Yield was calculated with Milk 2000. Milk per ton of silage was rounded to the nearest ten and milk per acre was rounded to the nearest hundred.


Net energy for lactation (NEL) and gain (NEG).


EXTENSION

ty measurements based on dry weight and are calculated from composite samples at each site

Silage and Grain Yield

Topics

- Do Past Results Equal Future Performance?
- <u>Corn Nutrient Requirements</u>
- Basic Math
- <u>Corn Row Widths, Populations, Etc.</u>
- <u>Corn Fungicides and Sulfur</u>
- <u>Corn Hybrid Trials</u>
- Soybean Row Width Studies
- Soybean High Yields
- Soybean Planting Date
- Problems in the Field from 2011
- <u>Home</u>

Comparing Row Widths

12/14/2011

Shelby County, Kentucky

Comparing Row Widths

30 inch rows

15 inch rows

Shelby County, August 16, 2011, R6 Growth Stage

15 inches	
-----------	--

VS.

30 inches

2010 Soybean Row Spacing Study
Ellis Farms, Field 23

Yield, Bu/A*
93.6
93.5
ns

*Adjusted to 13% moisture.

2011 Soybean Row Spacing Study										
Ellis Farms, Field 23										
Row Width, inches	Moisture, %	Yield, Bu/A*								
15	10.7	45.5								

30	10.8	43.6
LSD (0.10)	ns	1.6
*Adjusted to 13% moisture		

Row Width Comparions

|2/|4/20||

High Yield Soybean Research, Sponsored by the United Soybean Board

High Yield Soybeans

|2/|4/20||

Topics

- Do Past Results Equal Future Performance?
- <u>Corn Nutrient Requirements</u>
- Basic Math
- <u>Corn Row Widths, Populations, Etc.</u>
- <u>Corn Fungicides and Sulfur</u>
- <u>Corn Hybrid Trials</u>
- Soybean Row Width Studies
- Soybean High Yields
- Soybean Planting Date
- Problems in the Field from 2011
- <u>Home</u>

High-Yield Soybean

- 6 states, 3 locations per state
- Based on 2009, 2010 data...
- Narrow rows & foliar fungicide seem to contribute most to increased yields.
- Treatments resulting in no yield increases
 - Foliar fertilizers
 - Seed treatments
 - Inoculants

Planting timely, but not early. Planted into well-drained soils. Planted into fields with history of soybean. Soil fertility was adequate to excessive.

Very high manure rate, resulting in high N

Typical fertility with no manure

Non-nodulating soybean in both images. Non-nod soybeans must rely on nitrate in the soil for N

University of Arkansas

How much N, P and K do soybeans use?

Crop	Ν	P_2O_5	K ₂ O	Yield	Ν	P ₂ O ₅	K ₂ O
		lbs/bu		Bu/acre	lbs/acre		
soybean seed		0.7	1.1	30	90	21	33
soybean seed	Ъ			50	150	35	55
soybean seed	3			80	240	56	88
soybean seed				150	450	105	165

The value of manure

							Ν	P_2O_5	K ₂ O	S	Carbon
Source	9	F	Rate		unit				lbs/acre		
Broile	r litter		2		ton		110	110	90	1.2	1280
Broile	r litter	-	4		ton		220	220	180	2.4	2560
Broile	r litter	•	10		ton		550	550	450	6	6400
		Water	Ν	P ₂ O ₅	K ₂ O	S	С	assume 95%	6 organic mate	rial in th	e dry matter
Source unit % Ibs/ unit			it		40 to 45% (C by weight of	dry mat	ter part			
Broiler litter	ton	20%	55	55	45	0.6	640				

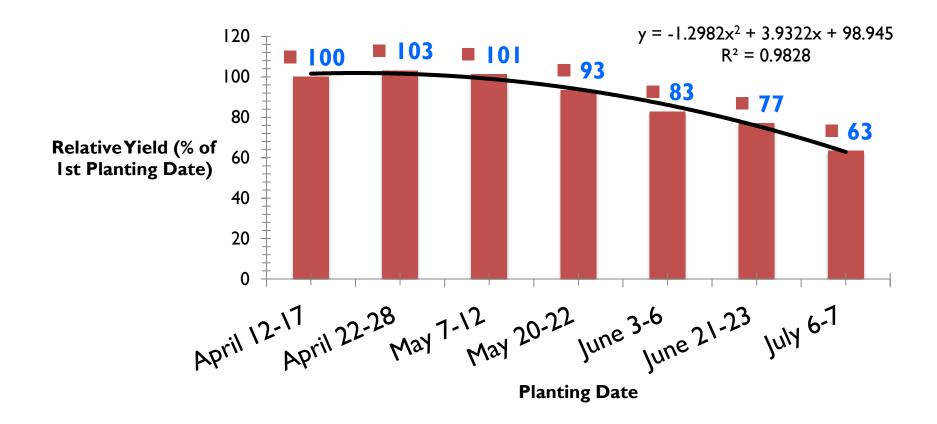
How much N (or P or K or C) is coming from foliar fertilizers?

Foliar Product†	Ν	P ₂ O ₅	K ₂ O	S	Fe	Zn	Organic Carbon	Humic Acids		
				реі	cent (%)					
Monty's 4-15-12	4	15	12	0	0.30	0.05				
Monty's 8-16-8	8	16	8	0	0.30	0.05				
Monty's 2-15-15	2	15	15	0	0.30	0.05				
Monty's Liquid Carbon	0	0	0	0	0.00	0.00	1.00	2.00		
Agro-Culture Liquid High NRG-N	27	0	0	I	0	0				
Agro-Culture Liquid		•		. –	•	•				
accesS	0	0	0	17	0	0				

[†] Mention of a trade name is not an endorsement by the University of Kentucky Cooperative Extension Service.

Topics

- Do Past Results Equal Future Performance?
- <u>Corn Nutrient Requirements</u>
- Basic Math
- Corn Row Widths, Populations, Etc.
- <u>Corn Fungicides and Sulfur</u>
- <u>Corn Hybrid Trials</u>
- Soybean Row Width Studies
- Soybean High Yields
- Soybean Planting Date
- Problems in the Field from 2011
- <u>Home</u>


Updated soybean planting publication

|2/|4/20||

Figure I. Planting date effect on mid-IV maturity group soybean yield, University of Kentucky Research and Education Center, Princeton, KY, 2008-2010.

¹ Location was the University of Kentucky Research and Education Center at Princeton, Kentucky. Soybean varieties were Pioneer 94M50 (2008, 2009) and Pioneer 94Y60 (2010). Rainfall for June through Sept. was -7.5 inches in 2008, plus 7.0 inches in 2009 and -4.5 inches in 2010 relative to 30-year average. Seeding rate was about 200,000 seeds per acre. Yields from each planting date are based as a percentage of yields from the first planting date.

|2/|4/20||

© 2011, Chad Lee, Univ. of Kentucky

LEE_Corn_Soybean_2011v11142011

Based on research results from Princeton, Kentucky, full season soybean planting can begin about 5 to 7 days after the median (50%) date for final spring freeze (Table I).

Kentucky Location	Probability Level for Last Freeze					
- The second	(32°F or less) ¹					
	90%	50%	10%			
Ashland	Apr I6	May 04	May 21			
Bardstown	Apr 3	Apr 20	May 6			
Beaver Dam	Apr I	Apr 14	Apr 28			
Bowling Green	Mar 26	Apr II	Apr 26			
Covington	Apr 4	Apr 20	May 6			
Danville	Mar 30	Apr I2	Apr 26			
Glasgow	Apr 4	Apr I6	Apr 28			
Henderson	Mar 29	Apr 9	Apr 20			
Hopkinsville	Mar 29	Apr I0	Apr 22			
Leitchfield	Apr 7	Apr 22	May 6			
Lexington	Apr 2	Apr 15	Apr 28			
Madisonville	Mar 31	Apr I2	Apr 24			
Mayfield	Apr I	Apr I3	Apr 25			
Monticello	Apr 5	Apr 20	May 6			
Murray	Mar 24	Apr 5	Apr I7			
Nolin River Lake	Apr 8	Apr 26	May 13			
Princeton	Mar 31	Apr I3	Apr 25			
Russellville	Mar 30	Apr I3	Apr 26			
Shelbyville	Apr I4	Apr 29	May 14			
Somerset	Apr 7	Apr 22	May 7			

Trade-off of earlier planting

- About 10% chance of killing freeze
- Slower germination and emergence
- Lower emergence (about 75% emergence in the studies, with a low of 50% one year).
- Higher seeding rate needed.
- You need to calculate the cost to benefits.

Seed Cost ¹	Seed Size	S	Seed Cost ²		
\$/50-lb bag	seeds/lb	seeds/acre	lb/acre	bags/acre	\$/acre
70.00	3200	120,000	38	0.75	52.50
		140,000	44	0.88	61.25
		160,000	50	1.00	70.00
		180,000	56	1.13	78.75
		200,000	63	1.25	87.50
		220,000	69	1.38	96.25
60.00	3200	120,000	38	0.75	45.00
		140,000	44	0.88	52.50
		160,000	50	1.00	60.00
		180,000	56	1.13	67.50
		200,000	63	1.25	75.00
		220,000	69	1.38	82.50
50.00	3200	120,000	38	0.75	37.50
		140,000	44	0.88	43.75
		160,000	50	1.00	50.00
		180,000	56	1.13	56.25
		200,000	63	1.25	62.50
		220,000	69	1.38	68.75

UKAg

12/14/2011

See the new Soybean Planting Publication (AGR-130)

- Available online at Grain Crops Extension website
- http://www.uky.edu/Ag/GrainCrops/
- or search google for
 - Grain Crops
 - Grain Crops Extension
 - Kentucky Soybean Planting

Topics

- Do Past Results Equal Future Performance?
- <u>Corn Nutrient Requirements</u>
- Basic Math
- <u>Corn Row Widths, Populations, Etc.</u>
- <u>Corn Fungicides and Sulfur</u>
- <u>Corn Hybrid Trials</u>
- Soybean Row Width Studies
- Soybean High Yields
- Soybean Planting Date
- Problems in the Field from 2011
- <u>Home</u>

Under Water UKAG I2/14/2011 Owensboro, Kentucky, May 10, 2011

© 2011, Chad Lee, Univ. of Kentucky

Water Damage

Owensboro, Kentucky, May 10, 2011

© 2011, Chad Lee, Univ. of Kentucky

IK

EXTENSION

Owensboro, Kentucky, May 10, 2011

|2/|4/20|| © 20||, Chad Lee, Univ. of Kentucky

Flooded Corn

Christian County, May 20, 2011, Flooded areas are common this spring. Some spots have since been replanted.

© 2011, Chad Lee, Univ. of Kentucky

Flooded Areas

Christian County, May 20, 2011 Sidedress N goes up to the wet spot.

© 2011, Chad Lee, Univ. of Kentucky

Christian County, May 20, 2011 Flooded-out corn near the foreground in this image.

© 2011, Chad Lee, Univ. of Kentucky

Ammonia Burn

|2/|4/20||

Christian County, May 20, 2011 Ammonia burn on the leaves near the end of the field where the machine makes turns and raises out of the ground.

© 2011, Chad Lee, Univ. of Kentucky

Breckinridge County, June 16, 2011; 90 lbs of K_2O / acre applied earlier in the spring

|2/|4/20|| © 20|

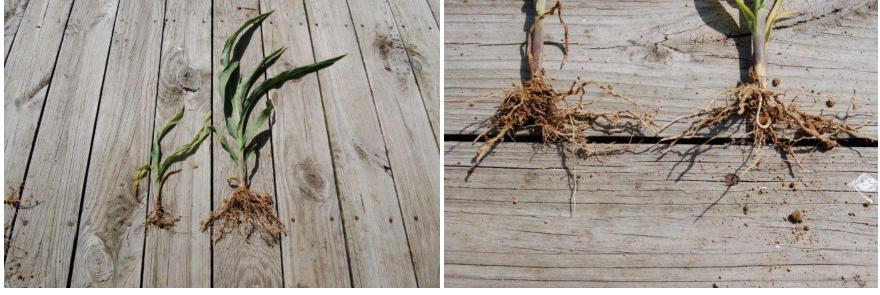
12/14/2011

© 2011, Chad Lee, Univ. of Kentucky

|2/|4/20||

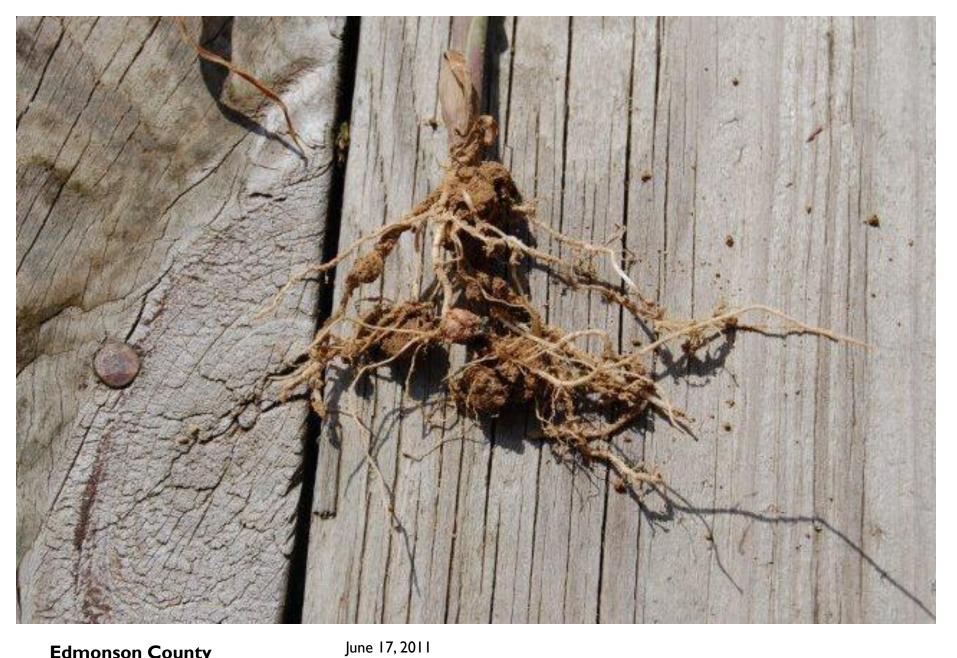
© 2011, Chad Lee, Univ. of Kentucky

LEE_Corn_Soybean_2011 v11142011


Breckinridge County, June 16, 2011; 90 lbs of K_2O / acre applied earlier in the spring. Most roots are confined to the sides of the seed furrow, but a few have broken through the bottom of the furrow and one has broken through the sides.

Breckinridge County, June 16, 2011; 90 lbs of K_2O / acre applied earlier in the spring.

|2/|4/20||



June 17, 2011

© 2011, Chad Lee, Univ. of Kentucky

Edmonson County

© 2011, Chad Lee, Univ. of Kentucky

June 17, 2011

Will foliar fertilizer help with sidewall compaction?

Crop		Ν	P_2O_5	K ₂ O	Yield		Ν	P_2O_5	K ₂ O
		lbs/unit					lbs/acre		
corn grain	bu	0.7	0.4	0.35	100	bu	70	40	35
					200	bu	140	80	70
					300	bu	210	120	105
corn stalks	ton I4		4 7	29	2.8	ton	39	20	81
		14			5.6	ton	78	39	162
					8.4	ton	118	59	244

Foliar Product	Rate	Unit	Ν	P ₂ O ₅	K ₂ O	S	Organic Carbon	Humic Acids
			lb/acre	lb/acre	lb/acre	lb/acre	lb/acre	lb/acre
Monty's 4-15-12	32	οz	0.114	0.4275	0.342	0		
Monty's 8-16-8	32	ΟZ	0.224	0.448	0.224	0		
Monty's 2-15-15	32	OZ	0.058	0.435	0.435	0		
Monty's Liquid Carbon	32	oz	0	0	0	0	0.02125	0.0425
Agro-Culture Liquid High NRG-N	32	oz	0.54	0	0	0.02		
Agro-Culture Liquid accesS	4	gal	0	0	0	6.8		

[†] Mention of a trade name is not an endorsement by the University of Kentucky Cooperative Extension Service.

June 10, 2011, Lexington, KY

© 2011, Chad Lee, Univ. of Kentucky

June 10, 2011, Lexington, KY

© 2011, Chad Lee, Univ. of Kentucky

S Deficiency?

UK/

EXTENSION

12/14/2011

N Deficiency?

Larue County, June 16, 2011 Yellow corn appears to line up with the width of N application equipment, not with planter passes.

© 2011, Chad Lee, Univ. of Kentucky

N Deficiency?

|2/|4/20||

Larue County, June 16, 2011 Some yellow streaks were not consistent with low areas of the field.

© 2011, Chad Lee, Univ. of Kentucky

N Deficiency?

UKAG 12/14/2011

Larue County, June 16, 2011 On the right half of the field, there appears to be some yellow streaks consistent with the N applicator. On the left side of the field, low areas were water stood appears to have caused the yellow streaks.

© 2011, Chad Lee, Univ. of Kentucky

Topics

- Do Past Results Equal Future Performance?
- <u>Corn Nutrient Requirements</u>
- Basic Math
- <u>Corn Row Widths, Populations, Etc.</u>
- <u>Corn Fungicides and Sulfur</u>
- <u>Corn Hybrid Trials</u>
- Soybean Row Width Studies
- Soybean High Yields
- Soybean Planting Date
- Problems in the Field from 2011
- <u>Home</u>

Hail Damage

Wayne County, June 3, 2011 Corn received hail about 5 days before these images were taken.

© 2011, Chad Lee, Univ. of Kentucky

Hail Damage

|2/|4/20||

Wayne County, June 3, 2011 Hail ripped leaves and but killed very few plants. Yield loss will be zero or very minimal.

© 2011, Chad Lee, Univ. of Kentucky

Hail Damage

Pollination

August 18, 2011

2 Ears Better Than I?

Two large ears but very low population.

|2/|4/20||

Downed Corn

II

EXTENSION

August 16, 2011 Shelby County, Kentucky

© 2011, Chad Lee, Univ. of Kentucky

EXTENSION

August 18, 2011, about 80 bu/acre yields Shelby County, KY

© 2011, Chad Lee, Univ. of Kentucky

Downed Corn

Topics

- Do Past Results Equal Future Performance?
- <u>Corn Nutrient Requirements</u>
- Basic Math
- <u>Corn Row Widths, Populations, Etc.</u>
- <u>Corn Fungicides and Sulfur</u>
- Corn Hybrid Trials
- Soybean Row Width Studies
- Soybean High Yields
- Soybean Planting Date
- Problems in the Field from 2011
- <u>Home</u>

Fayette County

Soybean Emergence, 2011

12/14/2011 © 2011, C

© 2011, Chad Lee, Univ. of Kentucky

Some early insect feeding, but no yield losses.

© 2011, Chad Lee, Univ. of Kentucky

Around July 28, 2011, potassium (K) deficiency. In this case, the field was low in potassium.

|2/|4/20||

© 2011, Chad Lee, Univ. of Kentucky

Hart County

EXTENSION

|2/|4/20||

© 2011, Chad Lee, Univ. of Kentucky

Hart County $\Delta \sim$

EXTENSION

12/14/2011

Around July 28, 2011. Similar soil type with higher soil test K values.

© 2011, Chad Lee, Univ. of Kentucky

Clinton County $\Delta \alpha$

II

EXTENSION

|2/|4/20||

2009: Concern about yellow streaks in the field. Inoculaton?

Clinton County, Sidewall Compaction

|2/|4/20||

2009: Similar observations this year. The sidewall compaction was causing the potassium deficiency. Additional potassium wasn't going to help much.

© 2011, Chad Lee, Univ. of Kentucky

EXTENSION

2004: similar observations this year. Compaction at about 2 inches deep caused these roots to stop growing down.

Topics

- Do Past Results Equal Future Performance?
- <u>Corn Nutrient Requirements</u>
- Basic Math
- <u>Corn Row Widths, Populations, Etc.</u>
- <u>Corn Fungicides and Sulfur</u>
- Corn Hybrid Trials
- Soybean Row Width Studies
- Soybean High Yields
- Soybean Planting Date
- Problems in the Field from 2011
- <u>Home</u>

